home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Info-Mac 3
/
Info_Mac_1994-01.iso
/
Development
/
General
/
GCC 1.37.1r15
/
Machines
/
pyr.md
< prev
next >
Wrap
Text File
|
1990-03-14
|
39KB
|
1,378 lines
;; Machine description for Pyramid 90 Series for GNU C compiler
;; Copyright (C) 1989 Free Software Foundation, Inc.
;; This file is part of GNU CC.
;; GNU CC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 1, or (at your option)
;; any later version.
;; GNU CC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU CC; see the file COPYING. If not, write to
;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
;; Instruction patterns. When multiple patterns apply,
;; the first one in the file is chosen.
;;
;; See file "rtl.def" for documentation on define_insn, match_*, et. al.
;;
;; cpp macro #define NOTICE_UPDATE_CC in file tm.h handles condition code
;; updates for most instructions.
;; * Try using define_insn instead of some peepholes in more places.
;; * Set REG_NOTES:REG_EQUIV for cvt[bh]w loads. This would make the
;; backward scan in sign_extend needless.
;; * Match (pc) (label_ref) case in peephole patterns.
;; * Should optimize
;; "cmpX op1,op2; b{eq,ne} LY; ucmpX op1.op2; b{lt,le,gt,ge} LZ"
;; to
;; "ucmpX op1,op2; b{eq,ne} LY; b{lt,le,gt,ge} LZ"
;; by pre-scanning insn and running notice_update_cc for them.
;; * Is it necessary to do copy_rtx in the test and compare patterns?
;; * Fix true frame pointer omission.
;; * Make the jump tables contain branches, not addresses! This would
;; save us one instruction.
;; * Could the compilcated scheme for compares be simplyfied, if we had
;; no named cmpqi or cmphi patterns, and instead anonymous patterns for
;; the less-than-word compare cases pyr can handle???
;; * The jump insn seems to accept more than just IR addressing. Would
;; we win by telling GCC? Or can we use movw into the global reg which
;; is a synonym for pc?
;; * More DImode patterns.
;; * Scan backwards in "zero_extendhisi2", "zero_extendqisi2" to find out
;; if the extension can be omitted.
;; * "divmodsi" with Pyramid "ediv" insn. Is it possible in rtl??
;; * Would "rcsp tmpreg; u?cmp[bh] op1_regdispl(tmpreg),op2" win in
;; comparison with the two extensions and single test generated now?
;; The rcsp insn could be expanded, and moved out of loops by the
;; optimizer, making 1 (64 bit) insn of 3 (32 bit) insns in loops.
;; The rcsp insn could be followed by an add insn, making non-displacement
;; IR addressing sufficient.
;______________________________________________________________________
;
; Test and Compare Patterns.
;______________________________________________________________________
; The argument for the rather complicated test and compare expansion
; scheme, is the irregular pyramid instructions for these operations.
; 1) Pyramid has different signed and unsigned compares. 2) HImode
; and QImode integers are memory-memory and immediate-memory only. 3)
; Unsigned HImode compares doesn't exist. 4) Only certain
; combinations of addresses are allowed for memory-memory compares.
; Whenever necessary, in order to fulfill these addressing
; constraints, the compare operands are swapped.
(define_expand "tstsi"
[(set (cc0)
(match_operand:SI 0 "general_operand" ""))]
"" "operands[0] = force_reg (SImode, operands[0]);")
(define_insn ""
[(set (cc0)
(compare (match_operand:SI 0 "memory_operand" "m")
(match_operand:SI 1 "memory_operand" "m")))]
"weird_memory_memory (operands[0], operands[1])"
"*
{
rtx br_insn = NEXT_INSN (insn);
RTX_CODE br_code;
if (GET_CODE (br_insn) != JUMP_INSN)
abort();
br_code = GET_CODE (XEXP (XEXP (PATTERN (br_insn), 1), 0));
weird_memory_memory (operands[0], operands[1]);
if (swap_operands)
{
cc_status.flags = CC_REVERSED;
if (TRULY_UNSIGNED_COMPARE_P (br_code))
{
cc_status.mdep = CC_VALID_FOR_UNSIGNED;
return \"ucmpw %0,%1\";
}
return \"cmpw %0,%1\";
}
if (TRULY_UNSIGNED_COMPARE_P (br_code))
{
cc_status.mdep = CC_VALID_FOR_UNSIGNED;
return \"ucmpw %1,%0\";
}
return \"cmpw %1,%0\";
}")
(define_insn "cmpsi"
[(set (cc0)
(compare (match_operand:SI 0 "general_operand" "r,g")
(match_operand:SI 1 "general_operand" "g,r")))]
""
"*
{
rtx br_insn = NEXT_INSN (insn);
RTX_CODE br_code;
if (GET_CODE (br_insn) != JUMP_INSN)
abort();
br_code = GET_CODE (XEXP (XEXP (PATTERN (br_insn), 1), 0));
if (which_alternative != 0)
{
cc_status.flags = CC_REVERSED;
if (TRULY_UNSIGNED_COMPARE_P (br_code))
{
cc_status.mdep = CC_VALID_FOR_UNSIGNED;
return \"ucmpw %0,%1\";
}
return \"cmpw %0,%1\";
}
if (TRULY_UNSIGNED_COMPARE_P (br_code))
{
cc_status.mdep = CC_VALID_FOR_UNSIGNED;
return \"ucmpw %1,%0\";
}
return \"cmpw %1,%0\";
}")
(define_insn ""
[(set (cc0)
(match_operand:SI 0 "general_operand" "r"))]
""
"*
{
rtx br_insn = NEXT_INSN (insn);
RTX_CODE br_code;
if (GET_CODE (br_insn) != JUMP_INSN)
abort();
br_code = GET_CODE (XEXP (XEXP (PATTERN (br_insn), 1), 0));
if (TRULY_UNSIGNED_COMPARE_P (br_code))
{
cc_status.mdep = CC_VALID_FOR_UNSIGNED;
return \"ucmpw $0,%0\";
}
return \"mtstw %0,%0\";
}")
(define_expand "cmphi"
[(set (cc0)
(compare (match_operand:HI 0 "general_operand" "")
(match_operand:HI 1 "general_operand" "")))]
""
"
{
extern rtx test_op0, test_op1; extern enum machine_mode test_mode;
test_op0 = copy_rtx (operands[0]);
test_op1 = copy_rtx (operands[1]);
test_mode = HImode;
DONE;
}")
(define_expand "tsthi"
[(set (cc0)
(match_operand:HI 0 "general_operand" ""))]
""
"
{
extern rtx test_op0; extern enum machine_mode test_mode;
test_op0 = copy_rtx (operands[0]);
test_mode = HImode;
DONE;
}")
(define_insn ""
[(set (cc0)
(compare (match_operand:HI 0 "memory_operand" "m")
(match_operand:HI 1 "memory_operand" "m")))]
"weird_memory_memory (operands[0], operands[1])"
"*
{
rtx br_insn = NEXT_INSN (insn);
if (GET_CODE (br_insn) != JUMP_INSN)
abort();
weird_memory_memory (operands[0], operands[1]);
if (swap_operands)
{
cc_status.flags = CC_REVERSED;
return \"cmph %0,%1\";
}
return \"cmph %1,%0\";
}")
(define_insn ""
[(set (cc0)
(compare (match_operand:HI 0 "nonimmediate_operand" "r,m")
(match_operand:HI 1 "nonimmediate_operand" "m,r")))]
"(GET_CODE (operands[0]) != GET_CODE (operands[1]))"
"*
{
rtx br_insn = NEXT_INSN (insn);
if (GET_CODE (br_insn) != JUMP_INSN)
abort();
if (which_alternative != 0)
{
cc_status.flags = CC_REVERSED;
return \"cmph %0,%1\";
}
return \"cmph %1,%0\";
}")
(define_expand "cmpqi"
[(set (cc0)
(compare (match_operand:QI 0 "general_operand" "")
(match_operand:QI 1 "general_operand" "")))]
""
"
{
extern rtx test_op0, test_op1; extern enum machine_mode test_mode;
test_op0 = copy_rtx (operands[0]);
test_op1 = copy_rtx (operands[1]);
test_mode = QImode;
DONE;
}")
(define_expand "tstqi"
[(set (cc0)
(match_operand:QI 0 "general_operand" ""))]
""
"
{
extern rtx test_op0; extern enum machine_mode test_mode;
test_op0 = copy_rtx (operands[0]);
test_mode = QImode;
DONE;
}")
(define_insn ""
[(set (cc0)
(compare (match_operand:QI 0 "memory_operand" "m")
(match_operand:QI 1 "memory_operand" "m")))]
"weird_memory_memory (operands[0], operands[1])"
"*
{
rtx br_insn = NEXT_INSN (insn);
RTX_CODE br_code;
if (GET_CODE (br_insn) != JUMP_INSN)
abort();
br_code = GET_CODE (XEXP (XEXP (PATTERN (br_insn), 1), 0));
weird_memory_memory (operands[0], operands[1]);
if (swap_operands)
{
cc_status.flags = CC_REVERSED;
if (TRULY_UNSIGNED_COMPARE_P (br_code))
{
cc_status.mdep = CC_VALID_FOR_UNSIGNED;
return \"ucmpb %0,%1\";
}
return \"cmpb %0,%1\";
}
if (TRULY_UNSIGNED_COMPARE_P (br_code))
{
cc_status.mdep = CC_VALID_FOR_UNSIGNED;
return \"ucmpb %1,%0\";
}
return \"cmpb %1,%0\";
}")
(define_insn ""
[(set (cc0)
(compare (match_operand:QI 0 "nonimmediate_operand" "r,m")
(match_operand:QI 1 "nonimmediate_operand" "m,r")))]
"(GET_CODE (operands[0]) != GET_CODE (operands[1]))"
"*
{
rtx br_insn = NEXT_INSN (insn);
RTX_CODE br_code;
if (GET_CODE (br_insn) != JUMP_INSN)
abort();
br_code = GET_CODE (XEXP (XEXP (PATTERN (br_insn), 1), 0));
if (which_alternative != 0)
{
cc_status.flags = CC_REVERSED;
if (TRULY_UNSIGNED_COMPARE_P (br_code))
{
cc_status.mdep = CC_VALID_FOR_UNSIGNED;
return \"ucmpb %0,%1\";
}
return \"cmpb %0,%1\";
}
if (TRULY_UNSIGNED_COMPARE_P (br_code))
{
cc_status.mdep = CC_VALID_FOR_UNSIGNED;
return \"ucmpb %1,%0\";
}
return \"cmpb %1,%0\";
}")
(define_expand "bgt"
[(set (pc) (if_then_else (gt (cc0) (const_int 0))
(label_ref (match_operand 0 "" "")) (pc)))]
"" "extend_and_branch (SIGN_EXTEND);")
(define_expand "blt"
[(set (pc) (if_then_else (lt (cc0) (const_int 0))
(label_ref (match_operand 0 "" "")) (pc)))]
"" "extend_and_branch (SIGN_EXTEND);")
(define_expand "bge"
[(set (pc) (if_then_else (ge (cc0) (const_int 0))
(label_ref (match_operand 0 "" "")) (pc)))]
"" "extend_and_branch (SIGN_EXTEND);")
(define_expand "ble"
[(set (pc) (if_then_else (le (cc0) (const_int 0))
(label_ref (match_operand 0 "" "")) (pc)))]
"" "extend_and_branch (SIGN_EXTEND);")
(define_expand "beq"
[(set (pc) (if_then_else (eq (cc0) (const_int 0))
(label_ref (match_operand 0 "" "")) (pc)))]
"" "extend_and_branch (SIGN_EXTEND);")
(define_expand "bne"
[(set (pc) (if_then_else (ne (cc0) (const_int 0))
(label_ref (match_operand 0 "" "")) (pc)))]
"" "extend_and_branch (SIGN_EXTEND);")
(define_expand "bgtu"
[(set (pc) (if_then_else (gtu (cc0) (const_int 0))
(label_ref (match_operand 0 "" "")) (pc)))]
"" "extend_and_branch (ZERO_EXTEND);")
(define_expand "bltu"
[(set (pc) (if_then_else (ltu (cc0) (const_int 0))
(label_ref (match_operand 0 "" "")) (pc)))]
"" "extend_and_branch (ZERO_EXTEND);")
(define_expand "bgeu"
[(set (pc) (if_then_else (geu (cc0) (const_int 0))
(label_ref (match_operand 0 "" "")) (pc)))]
"" "extend_and_branch (ZERO_EXTEND);")
(define_expand "bleu"
[(set (pc) (if_then_else (leu (cc0) (const_int 0))
(label_ref (match_operand 0 "" "")) (pc)))]
"" "extend_and_branch (ZERO_EXTEND);")
(define_insn "cmpdf"
[(set (cc0)
(compare (match_operand:DF 0 "register_operand" "r")
(match_operand:DF 1 "register_operand" "r")))]
""
"cmpd %1,%0")
(define_insn "cmpsf"
[(set (cc0)
(compare (match_operand:SF 0 "register_operand" "r")
(match_operand:SF 1 "register_operand" "r")))]
""
"cmpf %1,%0")
(define_insn "tstdf"
[(set (cc0)
(match_operand:DF 0 "register_operand" "r"))]
""
"mtstd %0,%0")
(define_insn "tstsf"
[(set (cc0)
(match_operand:SF 0 "register_operand" "r"))]
""
"mtstf %0,%0")
;______________________________________________________________________
;
; Fixed-point Arithmetic.
;______________________________________________________________________
(define_insn "addsi3"
[(set (match_operand:SI 0 "register_operand" "=r,!r")
(plus:SI (match_operand:SI 1 "register_operand" "%0,r")
(match_operand:SI 2 "general_operand" "g,rJ")))]
""
"*
{
if (which_alternative == 0)
return \"addw %2,%0\";
else
{
forget_cc_if_dependent (operands[0]);
return REG_P (operands[2])
? \"mova (%2)[%1*1],%0\" : \"mova %a2[%1*1],%0\";
}
}")
(define_insn "subsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(minus:SI (match_operand:SI 1 "general_operand" "0,g")
(match_operand:SI 2 "general_operand" "g,0")))]
""
"* return (which_alternative == 0) ? \"subw %2,%0\" : \"rsubw %1,%0\";")
(define_insn "mulsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(mult:SI (match_operand:SI 1 "register_operand" "%0")
(match_operand:SI 2 "general_operand" "g")))]
""
"mulw %2,%0")
(define_insn "umulsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(umult:SI (match_operand:SI 1 "register_operand" "%0")
(match_operand:SI 2 "general_operand" "g")))]
""
"umulw %2,%0")
(define_insn "divsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(div:SI (match_operand:SI 1 "general_operand" "0,g")
(match_operand:SI 2 "general_operand" "g,0")))]
""
"* return (which_alternative == 0) ? \"divw %2,%0\" : \"rdivw %1,%0\";")
(define_insn "udivsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(udiv:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "general_operand" "g")))]
""
"udivw %2,%0")
(define_insn "modsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(mod:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "general_operand" "g")))]
""
"modw %2,%0")
(define_insn "umodsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(umod:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "general_operand" "g")))]
""
"umodw %2,%0")
(define_insn "negsi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(neg:SI (match_operand:SI 1 "nonimmediate_operand" "rm")))]
""
"mnegw %1,%0")
(define_insn "one_cmplsi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(not:SI (match_operand:SI 1 "nonimmediate_operand" "rm")))]
""
"mcomw %1,%0")
(define_insn "abssi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(abs:SI (match_operand:SI 1 "nonimmediate_operand" "rm")))]
""
"mabsw %1,%0")
;______________________________________________________________________
;
; Floating-point Arithmetic.
;______________________________________________________________________
(define_insn "adddf3"
[(set (match_operand:DF 0 "register_operand" "=r")
(plus:DF (match_operand:DF 1 "register_operand" "%0")
(match_operand:DF 2 "register_operand" "r")))]
""
"addd %2,%0")
(define_insn "addsf3"
[(set (match_operand:SF 0 "register_operand" "=r")
(plus:SF (match_operand:SF 1 "register_operand" "%0")
(match_operand:SF 2 "register_operand" "r")))]
""
"addf %2,%0")
(define_insn "subdf3"
[(set (match_operand:DF 0 "register_operand" "=r")
(minus:DF (match_operand:DF 1 "register_operand" "0")
(match_operand:DF 2 "register_operand" "r")))]
""
"subd %2,%0")
(define_insn "subsf3"
[(set (match_operand:SF 0 "register_operand" "=r")
(minus:SF (match_operand:SF 1 "register_operand" "0")
(match_operand:SF 2 "register_operand" "r")))]
""
"subf %2,%0")
(define_insn "muldf3"
[(set (match_operand:DF 0 "register_operand" "=r")
(mult:DF (match_operand:DF 1 "register_operand" "%0")
(match_operand:DF 2 "register_operand" "r")))]
""
"muld %2,%0")
(define_insn "mulsf3"
[(set (match_operand:SF 0 "register_operand" "=r")
(mult:SF (match_operand:SF 1 "register_operand" "%0")
(match_operand:SF 2 "register_operand" "r")))]
""
"mulf %2,%0")
(define_insn "divdf3"
[(set (match_operand:DF 0 "register_operand" "=r")
(div:DF (match_operand:DF 1 "register_operand" "0")
(match_operand:DF 2 "register_operand" "r")))]
""
"divd %2,%0")
(define_insn "divsf3"
[(set (match_operand:SF 0 "register_operand" "=r")
(div:SF (match_operand:SF 1 "register_operand" "0")
(match_operand:SF 2 "register_operand" "r")))]
""
"divf %2,%0")
(define_insn "negdf2"
[(set (match_operand:DF 0 "register_operand" "=r")
(neg:DF (match_operand:DF 1 "register_operand" "r")))]
""
"mnegd %1,%0")
(define_insn "negsf2"
[(set (match_operand:SF 0 "register_operand" "=r")
(neg:SF (match_operand:SF 1 "register_operand" "r")))]
""
"mnegf %1,%0")
(define_insn "absdf2"
[(set (match_operand:DF 0 "register_operand" "=r")
(abs:DF (match_operand:DF 1 "register_operand" "r")))]
""
"mabsd %1,%0")
(define_insn "abssf2"
[(set (match_operand:SF 0 "register_operand" "=r")
(abs:SF (match_operand:SF 1 "register_operand" "r")))]
""
"mabsf %1,%0")
;______________________________________________________________________
;
; Logical and Shift Instructions.
;______________________________________________________________________
(define_insn ""
[(set (cc0)
(and:SI (match_operand:SI 0 "register_operand" "%r")
(match_operand:SI 1 "general_operand" "g")))]
""
"bitw %1,%0");
(define_insn "andsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(and:SI (match_operand:SI 1 "register_operand" "%0,r")
(match_operand:SI 2 "general_operand" "g,K")))]
""
"*
{
if (which_alternative == 0)
return \"andw %2,%0\";
cc_status.flags = CC_NOT_NEGATIVE;
return (INTVAL (operands[2]) == 255
? \"movzbw %1,%0\" : \"movzhw %1,%0\");
}")
(define_insn "andcbsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(and:SI (match_operand:SI 1 "register_operand" "0")
(not:SI (match_operand:SI 2 "general_operand" "g"))))]
""
"bicw %2,%0")
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(and:SI (not:SI (match_operand:SI 1 "general_operand" "g"))
(match_operand:SI 2 "register_operand" "0")))]
""
"bicw %1,%0")
(define_insn "iorsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(ior:SI (match_operand:SI 1 "register_operand" "%0")
(match_operand:SI 2 "general_operand" "g")))]
""
"orw %2,%0")
(define_insn "xorsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(xor:SI (match_operand:SI 1 "register_operand" "%0")
(match_operand:SI 2 "general_operand" "g")))]
""
"xorw %2,%0")
; The arithmetic left shift instructions work strangely on pyramids.
; They fail to modify the sign bit. Therefore, use logic shifts.
(define_insn "ashlsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(ashift:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "general_operand" "rnm")))]
""
"* return output_shift (\"lshlw %2,%0\", operands[2], 32); ")
(define_insn "ashrsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(ashiftrt:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "general_operand" "rnm")))]
""
"* return output_shift (\"ashrw %2,%0\", operands[2], 32); ")
(define_insn "ashrdi3"
[(set (match_operand:DI 0 "register_operand" "=r")
(ashiftrt:DI (match_operand:DI 1 "register_operand" "0")
(match_operand:SI 2 "general_operand" "rnm")))]
""
"* return output_shift (\"ashrl %2,%0\", operands[2], 64); ")
(define_insn "lshrsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(lshiftrt:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "general_operand" "rnm")))]
""
"* return output_shift (\"lshrw %2,%0\", operands[2], 32); ")
(define_insn "rotlsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(rotate:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "general_operand" "rnm")))]
""
"* return output_shift (\"rotlw %2,%0\", operands[2], 32); ")
(define_insn "rotrsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(rotatert:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "general_operand" "rnm")))]
""
"* return output_shift (\"rotrw %2,%0\", operands[2], 32); ")
;______________________________________________________________________
;
; Fixed and Floating Moves.
;______________________________________________________________________
;; If the destination is a memory operand, indexed source operands are
;; disallowed. Big DImode constants are always loaded into a reg pair,
;; although offsetable memory addresses really could be dealt with.
(define_insn ""
[(set (match_operand:DI 0 "memory_operand" "=m")
(match_operand:DI 1 "nonindexed_operand" "gF"))]
"(GET_CODE (operands[1]) == CONST_DOUBLE
? ((CONST_DOUBLE_HIGH (operands[1]) == 0
&& CONST_DOUBLE_LOW (operands[1]) >= 0)
|| (CONST_DOUBLE_HIGH (operands[1]) == -1
&& CONST_DOUBLE_LOW (operands[1]) < 0))
: 1)"
"*
{
if (GET_CODE (operands[1]) == CONST_DOUBLE)
operands[1] = gen_rtx (CONST_INT, VOIDmode,
CONST_DOUBLE_LOW (operands[1]));
return \"movl %1,%0\";
}")
;; Force the destination to a register, so all source operands are allowed.
(define_insn "movdi"
[(set (match_operand:DI 0 "general_operand" "=r")
(match_operand:DI 1 "general_operand" "gF"))]
""
"* return output_move_double (operands); ")
;; If the destination is a memory address, indexed source operands are
;; disallowed.
(define_insn ""
[(set (match_operand:SI 0 "memory_operand" "=m")
(match_operand:SI 1 "nonindexed_operand" "g"))]
""
"movw %1,%0")
;; Force the destination to a register, so all source operands are allowed.
(define_insn "movsi"
[(set (match_operand:SI 0 "general_operand" "=r")
(match_operand:SI 1 "general_operand" "g"))]
""
"movw %1,%0")
;; If the destination is a memory address, indexed source operands are
;; disallowed.
(define_insn ""
[(set (match_operand:HI 0 "memory_operand" "=m")
(match_operand:HI 1 "nonindexed_operand" "g"))]
""
"*
{
if (REG_P (operands[1]))
return \"cvtwh %1,%0\"; /* reg -> mem */
else
return \"movh %1,%0\"; /* mem imm -> mem */
}")
;; Force the destination to a register, so all source operands are allowed.
(define_insn "movhi"
[(set (match_operand:HI 0 "general_operand" "=r")
(match_operand:HI 1 "general_operand" "g"))]
""
"*
{
if (GET_CODE (operands[1]) != MEM)
return \"movw %1,%0\"; /* reg imm -> reg */
return \"cvthw %1,%0\"; /* mem -> reg */
}")
;; If the destination is a memory address, indexed source operands are
;; disallowed.
(define_insn ""
[(set (match_operand:QI 0 "memory_operand" "=m")
(match_operand:QI 1 "nonindexed_operand" "g"))]
""
"*
{
if (REG_P (operands[1]))
return \"cvtwb %1,%0\"; /* reg -> mem */
else
return \"movb %1,%0\"; /* mem imm -> mem */
}")
;; Force the destination to a register, so all source operands are allowed.
(define_insn "movqi"
[(set (match_operand:QI 0 "general_operand" "=r")
(match_operand:QI 1 "general_operand" "g"))]
""
"*
{
if (GET_CODE (operands[1]) != MEM)
return \"movw %1,%0\"; /* reg imm -> reg */
return \"cvtbw %1,%0\"; /* mem -> reg */
}")
;; If the destination is a memory address, indexed source operands are
;; disallowed.
(define_insn ""
[(set (match_operand:DF 0 "memory_operand" "=m")
(match_operand:DF 1 "nonindexed_operand" "g"))]
"GET_CODE (operands[1]) != CONST_DOUBLE"
"movl %1,%0")
;; Force the destination to a register, so all source operands are allowed.
(define_insn "movdf"
[(set (match_operand:DF 0 "general_operand" "=r")
(match_operand:DF 1 "general_operand" "gF"))]
""
"* return output_move_double (operands); ")
;; If the destination is a memory address, indexed source operands are
;; disallowed.
(define_insn ""
[(set (match_operand:SF 0 "memory_operand" "=m")
(match_operand:SF 1 "nonindexed_operand" "g"))]
""
"movw %1,%0")
;; Force the destination to a register, so all source operands are allowed.
(define_insn "movsf"
[(set (match_operand:SF 0 "general_operand" "=r")
(match_operand:SF 1 "general_operand" "g"))]
""
"movw %1,%0")
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(match_operand:QI 1 "address_operand" "p"))]
""
"*
{
forget_cc_if_dependent (operands[0]);
return \"mova %a1,%0\";
}")
;______________________________________________________________________
;
; Conversion patterns.
;______________________________________________________________________
;; The trunc patterns are used only when non compile-time constants are used.
(define_insn "truncsiqi2"
[(set (match_operand:QI 0 "register_operand" "=r")
(truncate:QI (match_operand:SI 1 "nonimmediate_operand" "rm")))]
""
"*
{
if (REG_P (operands[0]) && REG_P (operands[1])
&& REGNO (operands[0]) == REGNO (operands[1]))
{
cc_status = cc_prev_status;
return \"\";
}
forget_cc_if_dependent (operands[0]);
return \"movw %1,%0\";
}")
(define_insn "truncsihi2"
[(set (match_operand:HI 0 "register_operand" "=r")
(truncate:HI (match_operand:SI 1 "nonimmediate_operand" "rm")))]
""
"*
{
if (REG_P (operands[0]) && REG_P (operands[1])
&& REGNO (operands[0]) == REGNO (operands[1]))
{
cc_status = cc_prev_status;
return \"\";
}
forget_cc_if_dependent (operands[0]);
return \"movw %1,%0\";
}")
(define_insn "extendhisi2"
[(set (match_operand:SI 0 "general_operand" "=r,m")
(sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "rm,r")))]
""
"*
{
extern int optimize;
if (optimize && REG_P (operands[0]) && REG_P (operands[1])
&& REGNO (operands[0]) == REGNO (operands[1])
&& already_sign_extended (insn, HImode, operands[0]))
{
cc_status = cc_prev_status;
return \"\";
}
return \"cvthw %1,%0\";
}")
(define_insn "extendqisi2"
[(set (match_operand:SI 0 "general_operand" "=r,m")
(sign_extend:SI (match_operand:QI 1 "nonimmediate_operand" "rm,r")))]
""
"*
{
extern int optimize;
if (optimize && REG_P (operands[0]) && REG_P (operands[1])
&& REGNO (operands[0]) == REGNO (operands[1])
&& already_sign_extended (insn, QImode, operands[0]))
{
cc_status = cc_prev_status;
return \"\";
}
return \"cvtbw %1,%0\";
}")
; Pyramid doesn't have insns *called* "cvtbh" or "movzbh".
; But we can cvtbw/movzbw into a register, where there is no distinction
; between words and halfwords.
(define_insn "extendqihi2"
[(set (match_operand:HI 0 "register_operand" "=r")
(sign_extend:HI (match_operand:QI 1 "nonimmediate_operand" "rm")))]
""
"cvtbw %1,%0")
(define_insn "zero_extendhisi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "rm")))]
""
"*
{
cc_status.flags = CC_NOT_NEGATIVE;
return \"movzhw %1,%0\";
}")
(define_insn "zero_extendqisi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "rm")))]
""
"*
{
cc_status.flags = CC_NOT_NEGATIVE;
return \"movzbw %1,%0\";
}")
(define_insn "zero_extendqihi2"
[(set (match_operand:HI 0 "register_operand" "=r")
(zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "rm")))]
""
"*
{
cc_status.flags = CC_NOT_NEGATIVE;
return \"movzbw %1,%0\";
}")
(define_insn "extendsfdf2"
[(set (match_operand:DF 0 "general_operand" "=r,m")
(float_extend:DF (match_operand:SF 1 "nonimmediate_operand" "rm,r")))]
""
"cvtfd %1,%0")
(define_insn "truncdfsf2"
[(set (match_operand:SF 0 "general_operand" "=r,m")
(float_truncate:SF (match_operand:DF 1 "nonimmediate_operand" "rm,r")))]
""
"cvtdf %1,%0")
(define_insn "floatsisf2"
[(set (match_operand:SF 0 "general_operand" "=r,m")
(float:SF (match_operand:SI 1 "nonimmediate_operand" "rm,r")))]
""
"cvtwf %1,%0")
(define_insn "floatsidf2"
[(set (match_operand:DF 0 "general_operand" "=r,m")
(float:DF (match_operand:SI 1 "nonimmediate_operand" "rm,r")))]
""
"cvtwd %1,%0")
(define_insn "fix_truncsfsi2"
[(set (match_operand:SI 0 "general_operand" "=r,m")
(fix:SI (fix:SF (match_operand:SF 1 "nonimmediate_operand" "rm,r"))))]
""
"cvtfw %1,%0")
(define_insn "fix_truncdfsi2"
[(set (match_operand:SI 0 "general_operand" "=r,m")
(fix:SI (fix:DF (match_operand:DF 1 "nonimmediate_operand" "rm,r"))))]
""
"cvtdw %1,%0")
;______________________________________________________________________
;
; Flow Control Patterns.
;______________________________________________________________________
;; Prefer "br" to "jump" for unconditional jumps, since it's faster.
;; (The assembler can manage with out-of-range branches.)
(define_insn "jump"
[(set (pc)
(label_ref (match_operand 0 "" "")))]
""
"br %l0")
(define_insn ""
[(set (pc)
(if_then_else (match_operator 0 "relop" [(cc0) (const_int 0)])
(label_ref (match_operand 1 "" ""))
(pc)))]
""
"*
{
extern int optimize;
if (optimize)
switch (GET_CODE (operands[0]))
{
case EQ: case NE:
break;
case LT: case LE: case GE: case GT:
if (cc_prev_status.mdep == CC_VALID_FOR_UNSIGNED)
return 0;
break;
case LTU: case LEU: case GEU: case GTU:
if (cc_prev_status.mdep != CC_VALID_FOR_UNSIGNED)
return 0;
break;
}
return \"b%N0 %l1\";
}")
(define_insn ""
[(set (pc)
(if_then_else (match_operator 0 "relop" [(cc0) (const_int 0)])
(pc)
(label_ref (match_operand 1 "" ""))))]
""
"*
{
extern int optimize;
if (optimize)
switch (GET_CODE (operands[0]))
{
case EQ: case NE:
break;
case LT: case LE: case GE: case GT:
if (cc_prev_status.mdep == CC_VALID_FOR_UNSIGNED)
return 0;
break;
case LTU: case LEU: case GEU: case GTU:
if (cc_prev_status.mdep != CC_VALID_FOR_UNSIGNED)
return 0;
break;
}
return \"b%C0 %l1\";
}")
(define_insn "call"
[(call (match_operand:QI 0 "memory_operand" "m")
(match_operand:SI 1 "immediate_operand" "n"))]
""
"call %0")
(define_insn "call_value"
[(set (match_operand 0 "" "=r")
(call (match_operand:QI 1 "memory_operand" "m")
(match_operand:SI 2 "immediate_operand" "n")))]
;; Operand 2 not really used on Pyramid architecture.
""
"call %1")
(define_insn "return"
[(return)]
""
"*
{
if (get_frame_size () + current_function_pretend_args_size
+ current_function_args_size != 0
|| current_function_calls_alloca)
{
int dealloc_size = current_function_pretend_args_size;
if (current_function_pops_args)
dealloc_size += current_function_args_size;
operands[0] = gen_rtx (CONST_INT, VOIDmode, dealloc_size);
return \"retd %0\";
}
else
return \"ret\";
}")
(define_insn "tablejump"
[(set (pc) (match_operand:SI 0 "register_operand" "r"))
(use (label_ref (match_operand 1 "" "")))]
""
"jump (%0)")
(define_insn "nop"
[(const_int 0)]
""
"movw gr0,gr0 # nop")
;______________________________________________________________________
;
; Peep-hole Optimization Patterns.
;______________________________________________________________________
;; Optimize fullword move followed by a test of the moved value.
(define_peephole
[(set (match_operand:SI 0 "register_operand" "=r")
(match_operand:SI 1 "nonimmediate_operand" "rm"))
(set (cc0) (match_operand:SI 2 "nonimmediate_operand" "rm"))]
"rtx_equal_p (operands[2], operands[0])
|| rtx_equal_p (operands[2], operands[1])"
"*
cc_status.flags |= CC_NO_OVERFLOW;
return \"mtstw %1,%0\";
")
;; Same for HI and QI mode move-test as well.
(define_peephole
[(set (match_operand:HI 0 "register_operand" "=r")
(match_operand:HI 1 "nonimmediate_operand" "rm"))
(set (match_operand:SI 2 "register_operand" "=r")
(sign_extend:SI (match_operand:HI 3 "nonimmediate_operand" "rm")))
(set (cc0) (match_dup 2))]
"dead_or_set_p (insn, operands[2])
&& (rtx_equal_p (operands[3], operands[0])
|| rtx_equal_p (operands[3], operands[1]))"
"*
cc_status.flags |= CC_NO_OVERFLOW;
return \"cvthw %1,%0\";
")
(define_peephole
[(set (match_operand:QI 0 "register_operand" "=r")
(match_operand:QI 1 "nonimmediate_operand" "rm"))
(set (match_operand:SI 2 "register_operand" "=r")
(sign_extend:SI (match_operand:QI 3 "nonimmediate_operand" "rm")))
(set (cc0) (match_dup 2))]
"dead_or_set_p (insn, operands[2])
&& (rtx_equal_p (operands[3], operands[0])
|| rtx_equal_p (operands[3], operands[1]))"
"*
cc_status.flags |= CC_NO_OVERFLOW;
return \"cvtbw %1,%0\";
")
;; Optimize loops with an incremented/decremented variable.
(define_peephole
[(set (match_operand:SI 0 "register_operand" "=r")
(plus:SI (match_dup 0)
(const_int -1)))
(set (cc0)
(compare (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "nonmemory_operand" "ri")))
(set (pc)
(if_then_else (match_operator:SI 3 "signed_comparison"
[(cc0) (const_int 0)])
(label_ref (match_operand 4 "" ""))
(pc)))]
"(GET_CODE (operands[2]) == CONST_INT
? (unsigned)INTVAL (operands[2]) + 32 >= 64
: 1) && (rtx_equal_p (operands[0], operands[1])
|| rtx_equal_p (operands[0], operands[2]))"
"*
if (rtx_equal_p (operands[0], operands[1]))
{
output_asm_insn (\"dcmpw %2,%0\", operands);
return \"b%N3 %l4\";
}
else
{
output_asm_insn (\"dcmpw %1,%0\", operands);
return \"b%R3 %l4\";
}
")
(define_peephole
[(set (match_operand:SI 0 "register_operand" "=r")
(plus:SI (match_dup 0)
(const_int 1)))
(set (cc0)
(compare (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "nonmemory_operand" "ri")))
(set (pc)
(if_then_else (match_operator:SI 3 "signed_comparison"
[(cc0) (const_int 0)])
(label_ref (match_operand 4 "" ""))
(pc)))]
"(GET_CODE (operands[2]) == CONST_INT
? (unsigned)INTVAL (operands[2]) + 32 >= 64
: 1) && (rtx_equal_p (operands[0], operands[1])
|| rtx_equal_p (operands[0], operands[2]))"
"*
if (rtx_equal_p (operands[0], operands[1]))
{
output_asm_insn (\"icmpw %2,%0\", operands);
return \"b%N3 %l4\";
}
else
{
output_asm_insn (\"icmpw %1,%0\", operands);
return \"b%R3 %l4\";
}
")
;; Combine two word moves with consequtive operands into one long move.
;; Also combines immediate moves, if the high-order destination operand
;; is loaded with 0 or -1 and the low-order destination operand is loaded
;; with a constant with the same sign.
(define_peephole
[(set (match_operand:SI 0 "general_operand" "=g")
(match_operand:SI 1 "general_operand" "g"))
(set (match_operand:SI 2 "general_operand" "=g")
(match_operand:SI 3 "general_operand" "g"))]
"movdi_possible (operands)"
"*
output_asm_insn (\"# COMBINE movw %1,%0\", operands);
output_asm_insn (\"# COMBINE movw %3,%2\", operands);
movdi_possible (operands);
if (CONSTANT_P (operands[1]))
return (swap_operands) ? \"movl %3,%0\" : \"movl %1,%2\";
return (swap_operands) ? \"movl %1,%0\" : \"movl %3,%2\";
")
;; Optimize certain tests after memory stores.
(define_peephole
[(set (match_operand 0 "memory_operand" "=m")
(match_operand 1 "register_operand" "r"))
(set (match_operand:SI 2 "register_operand" "=r")
(sign_extend:SI (match_dup 1)))
(set (cc0)
(match_dup 2))]
"dead_or_set_p (insn, operands[2])"
"*
cc_status.flags |= CC_NO_OVERFLOW;
if (GET_MODE (operands[0]) == QImode)
return \"cvtwb %1,%0\";
else
return \"cvtwh %1,%0\";
")
;______________________________________________________________________
;
; DImode Patterns.
;______________________________________________________________________
(define_expand "extendsidi2"
[(set (subreg:SI (match_operand:DI 0 "register_operand" "=r") 1)
(match_operand:SI 1 "general_operand" "g"))
(set (subreg:SI (match_dup 0) 0)
(subreg:SI (match_dup 0) 1))
(set (subreg:SI (match_dup 0) 0)
(ashiftrt:SI (subreg:SI (match_dup 0) 0)
(const_int 31)))]
""
"")
(define_insn "adddi3"
[(set (match_operand:DI 0 "register_operand" "=r")
(plus:DI (match_operand:DI 1 "register_operand" "%0")
(match_operand:DI 2 "nonmemory_operand" "rF")))]
""
"*
{
rtx xoperands[2];
CC_STATUS_INIT;
xoperands[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
if (REG_P (operands[2]))
xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[2]) + 1);
else
{
xoperands[1] = gen_rtx (CONST_INT, VOIDmode,
CONST_DOUBLE_LOW (operands[2]));
operands[2] = gen_rtx (CONST_INT, VOIDmode,
CONST_DOUBLE_HIGH (operands[2]));
}
output_asm_insn (\"addw %1,%0\", xoperands);
return \"addwc %2,%0\";
}")
(define_insn "subdi3"
[(set (match_operand:DI 0 "register_operand" "=r")
(minus:DI (match_operand:DI 1 "register_operand" "0")
(match_operand:DI 2 "nonmemory_operand" "rF")))]
""
"*
{
rtx xoperands[2];
CC_STATUS_INIT;
xoperands[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
if (REG_P (operands[2]))
xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[2]) + 1);
else
{
xoperands[1] = gen_rtx (CONST_INT, VOIDmode,
CONST_DOUBLE_LOW (operands[2]));
operands[2] = gen_rtx (CONST_INT, VOIDmode,
CONST_DOUBLE_HIGH (operands[2]));
}
output_asm_insn (\"subw %1,%0\", xoperands);
return \"subwb %2,%0\";
}")
(define_insn "iordi3"
[(set (match_operand:DI 0 "register_operand" "=r")
(ior:DI (match_operand:DI 1 "register_operand" "%0")
(match_operand:DI 2 "nonmemory_operand" "rF")))]
""
"*
{
rtx xoperands[2];
CC_STATUS_INIT;
xoperands[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
if (REG_P (operands[2]))
xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[2]) + 1);
else
{
xoperands[1] = gen_rtx (CONST_INT, VOIDmode,
CONST_DOUBLE_LOW (operands[2]));
operands[2] = gen_rtx (CONST_INT, VOIDmode,
CONST_DOUBLE_HIGH (operands[2]));
}
output_asm_insn (\"orw %1,%0\", xoperands);
return \"orw %2,%0\";
}")
(define_insn "anddi3"
[(set (match_operand:DI 0 "register_operand" "=r")
(and:DI (match_operand:DI 1 "register_operand" "%0")
(match_operand:DI 2 "nonmemory_operand" "rF")))]
""
"*
{
rtx xoperands[2];
CC_STATUS_INIT;
xoperands[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
if (REG_P (operands[2]))
xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[2]) + 1);
else
{
xoperands[1] = gen_rtx (CONST_INT, VOIDmode,
CONST_DOUBLE_LOW (operands[2]));
operands[2] = gen_rtx (CONST_INT, VOIDmode,
CONST_DOUBLE_HIGH (operands[2]));
}
output_asm_insn (\"andw %1,%0\", xoperands);
return \"andw %2,%0\";
}")
(define_insn "xordi3"
[(set (match_operand:DI 0 "register_operand" "=r")
(xor:DI (match_operand:DI 1 "register_operand" "%0")
(match_operand:DI 2 "nonmemory_operand" "rF")))]
""
"*
{
rtx xoperands[2];
CC_STATUS_INIT;
xoperands[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
if (REG_P (operands[2]))
xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[2]) + 1);
else
{
xoperands[1] = gen_rtx (CONST_INT, VOIDmode,
CONST_DOUBLE_LOW (operands[2]));
operands[2] = gen_rtx (CONST_INT, VOIDmode,
CONST_DOUBLE_HIGH (operands[2]));
}
output_asm_insn (\"xorw %1,%0\", xoperands);
return \"xorw %2,%0\";
}")
;;- Local variables:
;;- mode:emacs-lisp
;;- comment-start: ";;- "
;;- eval: (set-syntax-table (copy-sequence (syntax-table)))
;;- eval: (modify-syntax-entry ?] ")[")
;;- eval: (modify-syntax-entry ?{ "(}")
;;- eval: (modify-syntax-entry ?} "){")
;;- End: